UM develops new technology to enhance cancer precision medicine
University of Macau
2020-04-16 16:32
  • Ultrasmall Polymer Probes used in NIR-II cancer phototherapy

  • Ultrasmall Polymer Probes used in NIR-II cancer photothermal therapy

  • Yuan Zhen

  • Men Xiaojun

The Youtube video is unavailable

A research team in the University of Macau (UM) Faculty of Health Sciences (FHS), led by Associate Professor Yuan Zhen, has made significant progress in optical molecular imaging and precision medicine for cancer treatment. The team has developed an efficient strategy to prepare ultra-small organic polymer probes for second near-infrared (NIR-II) photoacoustic imaging-guided cancer diagnostic tests and phototherapy. The study paves the way for clinical applications of organic semiconductor nanoprobes, and has been published in the authoritative international journal Advanced Functional Materials (Impact Factor: 15.621).

Theranostic nanoagents, which incorporate diagnostic and therapeutic capability, have emerged as a promising nanoplatform for cancer detection and treatment. As multifunctional and all-in-one or one-for-all probes, theranostic nanoagents can provide more comprehensive and accurate information for cancer detection and treatment, representing a new trend in nanomedicine for cost-effective precision medicine. Meanwhile, multiscale photoacoustic imaging (PAI) and photothermal therapy (PTT) in NIR-II window (1000–1700 nm) hold great promise for clinical precision medicine for their greater penetration depth and minimal tissue exposure. However, the development of such integrated diagnostic and therapeutic techniques is largely hampered by the lack of metabolisable NIR-II phototheranostic agents.

Prof Yuan’s team constructed a biodegradable NIR-II highly absorbing conjugated polymer dots (Pdots) with rapid clearance for PAI-guided PTT. The unique design of low-bandgap D-A -conjugated polymer (DPP-BTzTD), together with a modified preparation method, allow the researchers to fabricate Pdots in ultrasmall particle size. Extensive experimental tests have demonstrated that the constructed Pdots exhibit excellent photostability, strong NIR-II absorption, good biocompatibility, bright PA signals, and high photothermal conversion efficiency (53%). In addition, upon tail-vein intravenous injection, Pdots can also ablate tumours efficiently and excrete rapidly through the renal filtration system. In particular, both in vitro and in vivo assays have indicated that the Pdots possess a remarkable PTT performance under the irradiation of a 1,064 nm at 0.5 W cm-2, which is much lower than its maximum permissible exposure limit of 1 W cm−2. This pilot study thus paves a novel avenue for the development of organic semiconducting nanoagent for future cancer translation studies. The study was led by Prof Yuan and his PhD student Men Xiaojun. It was supported by UM and the Macao Science and Technology Development Fund.

Prof Zhen YUAN’s academic investigation focuses on cutting-edge research and development in laser, ultrasound and EEG/fMRI-related biomedical technologies as well as their clinical/pre-clinical applications in neuroimaging and neurosciences, and optical molecular imaging and biomedical optics.

Prof Zhen’s team is dedicated to studying the principles of original imaging in biomedical optics and prototype optics, and has realised the transformation from theranostic imaging to quantitative functional imaging for the first time in world history. Prof Zhen is also one of the pioneers in the early development of continuous wave near-infrared functional imaging. The technology has been approved by the United States Food and Drug Administration in clinical diagnostic tests for brain diseases. Prof Zhen has received international recognition through publishing nearly 200 research articles in high-ranked SCI journals. He is an editorial board member of Quantitative Imaging in Medicine and Surgery, associate editor of BMC Medical Imaging, and associate editor of Frontiers in Human Neuroscience. He is also a senior member of the Optical Society and International Society for Optics and Photonics, a board member of a specialised committee in biomedical sciences under the Chinese Optical Society, and the vice president of the Macao Society of Nuclear Medicine and Molecular Imaging.

To get the latest official news, please subscribe the Government Information Bureau’s Telegram News Channel at https://t.me/macaogcsEN.

To get the latest official news, please subscribe the Government Information Bureau’s Telegram News Channel at https://t.me/macaogcsEN.
Subscription
MSAR GCS Facebook
MSAR GCS Facebook
MSAR GCS Wechat Channel
MSAR GCS Wechat Channel
澳門政府資訊
澳門特區發佈
MSAR GCS Government News Channel
MSAR GCS Government News Channel
Link is copied.